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A 

i n  which the 

specified i n  

neutral  functional d i f f e ren t i a l  equation i s  a relationship 

derivative of the s t a t e  of. a system a t  time 
! , . 
terms of the s t a t e  a t  time t as well as the s t a t e  and 

t i s  

the  derivative of the s t a t e  fo r  values of time preceding t, Many 

authors have considered such equations as may be seen by consulting 

[lJ1 [23, [3]. Recently, Driver [ k ]  considered a special  c lass  f o r  

which the derivative occurs l inear ly  and proved the i n i t i a l  value 

problem is well-posed i n  the sense t h a t  a solution exis t s  and depends 

continuously upon the  i n i t i a l  data. 

en t i ab i l i t y  properties of the solution, Hale and Meyer [53 introduced 

To avoid discussing the d i f fe r -  

an integrated form of the equation which i f  different ia ted would con- 

t a i n  the derivative of the s t a t e  with coefficients depending only on 

to H a l e  and Cruz [63 gaGe a much more general version of 153 and 

proved again the  problem was well-posed, 

The present paper continues w i t h  the development i n  163. 

ore specifically,  w'e consider a class  of equations which in  some 

respects i s  more general than- the ones considered in  [6] and it has 

the advantage t h a t  it leads i n  a very natural  manner t o  a discussion 

of the problem of the backward existence of solutions. 

ing the basic theory of existence, un'ic$mssJ continuous dependence 

and continuation of solutions, it is shown tha t  solutions of most l i nea r  

A f t e r  develop- - - .  
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equations w i t h  bounded coefficients can not have a nonz6ro solution 

which approaches zero f a s t e r  than an exponential. 

n 
1, Definition, Suppose r z 0 i s  4 given real number, R = (-=,a), E 

i s  a r e a l  or complex n-dimensional l inear  vector space w i t h  norm I 1 ,  
C([a,b], E?) ! i s  the  Banach space of continuous functions mapping the 

interval  Ea,b] i n to  En with the topology of uniform convergence. 

If [a,b] = [-r,O], we l e t  C = C([-r,O], E ) and designate thetlorm 

. .  

n 

of an element @ i n  C by 141 = sup,rgea I @  (e)l.. Single bars axe 

generally used t o  denote norms i n  d i f fe ren t  spaces, but no confusion 

should ar ise .  

any t E [a, a-kA], we l e t  xt E C be defined by xt(e) I: x(t+e), 

-r S 6 d 0. If fl i s  an open subset of R x C and f, D: f l  +ER are 

If u E R, A z 0 and x E C([ct-r, *A], En)y then for 

given continuous functions, we say the re la t ion  

i s  a flurctional d i f f e ren t i a l  equation. A function x is  said t o  be a 

solution of (1.1) if there are  Q E R, A > 0 such t h a t  

x e C([a-r, @A), e), (t,xt) E fl, t E [a, a+A) 

(1.1) on 

not x ( t )  is  continuously- different iable  on (a, WA). For a given 

and x satisfies 

(up u+A). Notice &is defini t ion implies t h a t  D(t,$) and 

u E R, 4J E C, (u,4J) E fl, we say x(u,.@) ,. .. is a solution of (1.1) .c.uI w i t h  

i n i t i a l  value (ay@) or simply a solution of (1.1) through (u t@)  - 
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i f  there is  an A > 0 such tha t  x(cr99) is a solution of (1.1) on 

[a-r, cr+A) and xa(a,@) = 9, 

Equation (Ll) is  very general and includes ordinary d i f fe r -  

(r = 0) as w e l l  as. the  following: 
. .  

a [x( t )  - bx(t-r)]  = f(t,x%), b # 0, 

- d x(t-r) = f(t x ) 
dt # t  

I n  the  c l a s s i ca l  terminology, f o r  

retarded functional d i f f e ren t i a l  equation, equation (1.3) an equation 

of neutral  type (because, if x i s  differentiable,  the derivative 

occurs at  t and t - r), equation (1.4) an equation of advanced 

type and equation (1.5) an equation of mixed type. 

r > 0, equation (1.2) is c d l e d  a 

The init ial  value problem f o r  equation (Ll) i n  general 

w i l l  not have a solution since it includes (1-4) and (1.5), 

r e s t r i c t ions  w i l l  be imposed i n  the  function D 

value problem is  well defined, 

is  convenient to have 

Additional 

so that  the i n i t i a l  

To formulate these restr ic t ions,  it 

.I - .  
: . t  

1.1 Definition, Suppose SQ is an open set i n  R x C, D: Q -+E" is 
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continuous, D ( t , c p )  has a continuous Frechet derivative D; (t,cp) w i t h  

respect; to cp on SZ and 

. .  

for - (t,q) E !dZ, $ E C, where p(t,cp,t)) .. ' is  an n x n matrix w i t h  ele- 

ments of bounded var ia t ion in  0 E [-r,O]. For any f3 in [-r,O] we ... 
cay D is atomic a t  p on 51 i f  

where A(t,cp,p) is conl&nuous i n  (t,cp) and there is  a scalar func- 

t i on  r(t,q,s,p) continuous for  (t,v) E 51, s B 0, r(t,cp,o,p) = o 
such that  

for  (t,cp) E 51, s z 0, JI e C. 

1.2 Definition. A neutral  functional differential equation (NFDEL 

i s  a system (1.1) for which D , f f  51 *En axe continuous and D fe 
4 e 

atomic a t  zero on $2. 
1 . t  - - -  

A very s p e c i d  but important ease of a NEllE is one i n  which 

Sl = ( T r Q ) )  X C, D(t,cp) is  l inear  i n  cp 

t 
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0 

I '  

f o r  (t,a)) E 'a, where B(t) i s  continuous and -f(t,s) i s  continuous 

f o r  In  particular,  all retarded func- 

t i o n a l  d i f f e ren t i a l  equations (RFDE) 

t E ( T ~ W ) ,  s s: 0, T(t,O) = 0, 

are included i n  the  c lass  of NE'DE. 

I n  [&I, a NF'DE was defined i n  a manner similar t o  the above 

fo r  a class of operators D(t,cp) = q ( 0 )  - g(t,q) even when g(t,(l') 

is  not different iable  i n  cp. The important difference here is not the 

smoothness of g(t,cp) but the f ac t  that  D(t,ep) need not be of t h i s  

special  form. 

ndamental Properties of NFDE 

In  t h i s  section, we give r e su l t s  on the existence, unique- 

* ness# continuation and continuous dependence of solutions on i n i t i a l  

data 

. Xf s1 is  an open s e t  i n  R x C and (lJ) 



6 

is a m E ,  then fo r  any (a,cp) E st, there is a solution of (1.1) pass- 

ing through 

Proof: A function x is 8 solution.of '(1.1) through (u,cp) if  .and 

only i f  there is an ar > 0 such that x .satisfies the equation 

- 
- I. 

i f  and only if x(a+t) = q ( t )  + ~ ( t ) ,  -r S t S a, where z ( t )  

satisfies 

Since D(t, 'p) is continuously different iable  i n  'p, 

where 
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for (t,cp) E 9, 1$1 , I I S: 6 and &(t,cp, 6 )  is  continuous i n  t ,qs6 

fo r  (t,cp) E R, $3 h 0 and e(tscp,O) = 0. Therefore, using (2,2) and 

(2831, x 

z s a t i s f i e s  

r u  
i s  a solution of (2.1) i f  and only if xa+t = cpt + zt and 

z = 0. 
0 

Using the  f ac t  that D is atomic at  0 on SI, we have (as long as 

(G++t,Q a 

zo = 0. 

If we let (Tz)(t)  = 0, (Sz)(t)  = 0, t E [-r,O], and 



then (23) i s  equivalent t o  the equation 

n z = Tz + Sz, z E C([-r,aJ, E ), zo = 0. 

C I  

One nuw proceeds as i n  [6] t o  show there are posit ive a,@ 

i f  st(Tx,p) = ( c :  
t E: [O,G])$ then 

n 
S: &'G,E) + C([-r,ldi], E 

T f S: J%fcd;,p) + &g'G,F)* 
point of T + S i n  &(&E) and thus a solution of (1.1) through 

so that ,  
n [-r,?i] -+E ,.continuous, to = 0, I C t l  si E, 

T: J$G,~) -sC([-r,E], En) i s  a contraction, 

is completely continuous and 

This implies the  existence o f  a fixed 

f@,cP) 0 

Theorem 2.2 (Uniqueness). If SI is an open set i n  R x C and (1.1) 

i s  a NEDE with f(t,cp) Locally l ipschi tz ian i n  cp in each compact set 

of n, then for  any 

through (a,cp ) . 
(ct,cp) E SI, there i s  a unique solution of (1.1) 

Proof', 

d i f f e r e n t i a l  equations i f  one uses the  f ac t  t ha t  a solution of (1.1) 

satisfies = 'pt + zt and z satisfies (2.5). 

The proof is  essent ia l ly  the same as the proof f o r  ordinary 
IIc--. 

ry 

e Suppose Sl is an open set in 

R X C, Dk' R + E n  i a  atamic a t  0 on p * .  and +(t,cp,O) is the 

corresponding matrix of Definition 1,1, k = 0,192,. .. Suppose 

Do, \(t,cp,O) 

; i  

are  u n i f o d y  continuous on closed bounded subsets of 



$2, Dk as w e l l  as the  derivative D' with respect t o  Q, converge 

t o  Do, D' respectively as k 3 Q) unifornCLy on closed bollnded sub- 
899 

0,'p 

, k = Ot1L020.003 axe continuous, f (t $) 4 fo(sjq) 
k 9  

sets of R, fk..$2 +En 

as k 3 "o, (t,q) 3 ( s , q )  for a l l  (s,~) E R and for any (s ,q)  E R, 

there  i s  a neighborhood V(s,cp) of (sap) and a constant M such 

k k  Finally, l e t  

suppo& x = x (0 ,cp i s  a solution of 

(a ,qp ) E R be given, (ak,cpk) (oo;cpo) as k + 00 and 
k k k k  

k wi th  i n i t i a l  value cpk at u . 
and is  the on ly  solution through 

such that the x ,.k 2 koa can be defined on Tu -r,b] and 

If xo is defined on [a,-rPbJ, b > a, 

0 0  (u #p >, then there i s  an integer ko 
' l e  k 

k x (t) -+xo(t) as k --Po0 

0 < e < b - a + r3 there 

is  defined on ~cro-scC?,b] 

on [ ao-r+e , b] e 

0 

0 uniformly on [CY -r,b]," t h a t  is, fo r  any 
is a kl = k.,.(e) 2 0 such t h a t  x k k 2: kl(e), 

k and x (t) -+ xo(t) as k --P Q) uniformly 

Proof: The proof is technically cong2iea-ted but proceeds i n  a manner 

very similar to the  one in r63 taking in to  account t h a t  a solution of 

o__a_ 
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cv 
(1.1) Satisfies = (pt + zt where z satisfies (2.5). 

Definition 2.1, If D is  atomic a t  f3 on Q and W is  a subset of 

52, we say D i s  uniformly atomic at' zero on V if? there is  an N >.O 

such t h a t  IA-l(t,cp,p)I S N, ID(,(t,q)l S N for  a l l  (t,cp) E W and 

r(t,qp,s,p) -+.o as s 3 o u n i f o w  f& (t,cp) E W. 

If x i s  a solution of (1.1) on [u-r,a), a > a, we say 

x^ i s  a continuation of x if there i s  a b > a such that ^x is 

defined on [u-r,b), coincides with x on [a-r,a) and satisfies 
t 

(1.1) on (a,b). A solution x is noncontinuable if  no such con- 

t inuation exists;  that i s  [.-.,a) is  the maximal interval  of 

existence of the solution X. If the conditions of the basic existence 

theorem are  sa t i s f ied ,  then there is  a solution of (1.1) on 

for  some a > u. 
[a-r,a) 

Zorn's lemma implies the existence of a noncontinuable 

solution of (l.l)e 

istence is  open. 

It is  also t rue  that  the maximal.  interval. of ex- 

The following theorem as well as the proof i s  based on the 

thesis of W, Melvin [7]. 

e Suppose fl is an open set i n  R x C, 
a 

I 

(1.1) is a NIFDE and for  any closed bounded set W i n  Q with a 

8-neighborhood also i n  $2, f maps W in to  a bounded set i n  

E", D(t,qp), D;(t,cp) are uniformly continuous on W and D is  uni- 

formly atomic at  zero on W e  If x is a noncontinuable solution of 
: . r  - - -  
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(1.1) on [o-r,b), then there i s  a t' i n  [a,b) such tha t  

( t ' , x t , )  0. 

Proof: The case r = 0 i s  known from ordinary d i f fe ren t ia l  equations, 
P 

Therefore, suppose r > 0, Also, we may assume b f in i t e .  If there 

i s  a sequence tk + b m  and a \Ir i n  C such tha t  x +*, then the  
) I  tk ! ;  

fact that  r > 0 implies that  x ( t )  i s  uniformly continuous on 

[u-r,b) and x ( t )  --P $(O) as t -> b. Therefore, i f  we define x(b) 

= Jr (O) ,  then (b,%) must belong t o  %he boundary of 0 or x would 

be continuable beyond be Also, the  fact t h a t  xt i s  continuous and 

the  distance of (b,%) from any closed bounded se t  W i s  posit ive 

imply the existence of a such t h a t  

a conclusion stronger than asserted. 

(t,x,) p W f o r  tw s t < b, 

If no such subsequence exists, there are two cases t o  con- 

sider: namely the  cases where the set V = ((t,x,)] i s  bounded and 

unbounded. 

W i n  L?, there is a constant such t h a t  I @ I  < for (t,@) E W. 

L e t  = m a x  (Ix,I 9 $ )  From hypothesis, there i s  a sequence tk --D b" 

monotonically such tha t  

C and the  Pact that  

tW such t h a t  (t,x,) W fo r  t d t < b, 

If t h i s  s e t  i s  unbounded, then for  any closed bounded s e t  

Ixt I > k+ From the property of the norm i n  
k 

xt(B) = x(t+8), th is  implies the existence of a 

W 
~f the s e t  v = ((t,xt) t d [cr,b)) i s  bounded and has a 

6-neighborhood i n  L?, then t h i s  s e t  i s  also closed since there axe - -. 
: *  

no subsequences $ -+ b- such tha t  x converges. We wish t o  show 
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there is an a,> 0 such that x is uniformly continuous on [b-a,b) 

and, therefore, {(t,xt), t e [o,b)) 

This will obviously be a contradiction. 

From the hypotheses on V, D 

belongs to a compact set in 0. 

and Definitions 2.1 and (4.1)) 

there are a f3, > 0 and continuous Functions y(s), s 3 0, e(@) I 
0 S f3 5 pol ~ ( 0 )  = e(0) = 0, and a constant N . such that 

Consequently, 

If x( t )  is not unifomly continuous for t in [u-r,b), 

There are an e > 0, a, monotone decreasing sequence of positive 

tk numbers 4r9 =+ 0 as k =+ and a seq-dence of real numbers 

I 
I 

. .  

- I. 
with tk, tk - L& in [aab) such that Ix(tk) - x(tk-41 z e 



f o r  a l l  k, For any s > 0, the f a c t  that  x i s  uniformly continuous 

on [a-r,b-s] implies for  any @ '  > 0 the existence of a A >  0 

such t h a t  Ix( t )  - x ( t ' ) l  S e t  for lt-ts I < A, tot* i n  [a-r,b-s], 

Also, since D(a,@) i s  uniformly continupus on Tb, we cam choose A 

so tha t  ID(%$@) - D(t',@)l d E:' for . ( t - t ' )  < A ,  (%$a) E V, ( % I , @ )  E V. 

Suppose 0 < f3 r; Bo is given, choose @ '  < min (B,@) and K 
I 

suf f ic ien t ly  large tha t  < A, k 2: K, For each k 2: K 

This sequence of numbers i s  well defined since 

From (4.2)' 

Ix(t,) - x(tk-+)l > e, 

Now one CMI obviously choose B s 1 80 t ha t  E > 0, Consequently, 
03 J 

the hypothesis t ha t  x(t9 is not urai.formly continuous on [o-r,b) 

implies tha t  D(t,xt) is not uniformly continuous on [a,b). 

. ~ * - -  
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On the other hand, 

for a l l  t, t 3- 7 i n  [u,b). Since (f(s,xs)l Ir M for (s,x,) E: W 

and some constant M, the f'unction D(t,xt) is uniformly continuous 

on [u,b). This contradiction completes the proof of the theorem. 

To improve on Theorem 2.4 we suppose D(t,O) is continuous 

in  t,@, linear i n  4, and in  fact  sa t i s f ies  

for  a contfnuous matrix A(t) and scalar  function y(t,s), y(t,O) = 0, 

t ER, s 1 0 .  

I n  the proof of Theorem 2.4, the assumption that  a 

6-neighborhood of W belonged t o  52 was used only t o  show that 

relation (2.6) was valid for some B. When D( t ,@)  is l inear i n  @ 

and sa t i s f ies  (2.7), e(@) 

The proof above of Theorem 2.4 for t h i s  case yields 

in  (2.6) can be taken identically zero, 

n Theorem 2.5, Suppose Q is  an open set in  R x C, f: Q 3 E is 

continuous and maps closed bounded subsets of R 

and D: R x C +En sa t i s f ies  (2.7). If (u,@) E Q and x is  a 

- -. 
: I  

into bounded sets  



nonconbinutible 8olution of (1.1) on [a-rpb) through (a, @ ) $  thcri 

for  nriy closed bounded s e t  W i n  0 there i s  a tw E: [a,b) such 

that (tpxt) { W for  t E [t,b). . I '  

3. Backward Continuation. 
. I  , ,  n We say a f'unction x E C([a-r-a,a],E ), 01 > 0, i s  a solution 

i f  x = @ and for  any ei 
7 E [a-a2cr], x i s  a solution of (1.1) on [ T - ~ ~ u ]  through (T,x,). 

We sometimes r e f e r  t o  x as a backward continuatio,? of @ by (lOl)e 

Theorem 3*1, Suppose R is an open s e t  i n  R x C and D i n  (1,l) 

i s  atomic a t  -r on R. If (a,@) e R, then there i s  an a > 0 and 

a solution of (lbl) through ( c r o @ )  on [a-r-a,~], If, i n  addition 

f(t,QI) @ $  then the solution i s  unique, i s  loca l ly  Lipschitzian i n  

Proof: 

of Theorem 1,l except a l l  extensions are made t o  the l e f t  of cr - r 
The proof of th i s  theorem follows the  same l ines  as the proof 

_____u 

ra ther  than t o  the r igh t  of 0. The assertion of uniqueness i s  proved 

i n  a manner similar t o  the proof of Theorem 1.2. 

If D i n  (1.1) is  atomic a t  zero and -r on dl 

Theorems 1.1 and 3.1 imply fo r  any 

@ > 0 and a continuous n-vector function x on [cr-r-a,a+p] such 

that  xa = D(t,xt) i s  continuousiy diifferentiable and s a t i s f i e s  

(1,l) on This i s  the same type of r e su l t  tha t  i s  known 

for  ordinary d i f f e ren t i a l  equations 

(a,@) E R, there a r e  a > 0, 

(a-a,er+@). 

(r = 0), 
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Let U be the values of (%,a,@) e R x R x C for which 

xt(a,O) is defined and for each (%,a) E R x R, l e t  U(t,a) = 

[ @  E C: (t,a,O) E U). Also, define T(t,a)@ = xt(u,O). If D i s  

atomic a t  0 and a, then T( t ,a ) :  U(t,a) + T(t,u)U(t,u) i s  one- 

to-one. With further conditions on D,f, we can prove 

! '  .. 
Theorem 3020 Suppose Sl is an open s e t  i n  R x C, D i n  (1,l) is  

atomic at 0 and -r on Sl, and U, U(t,a) are  defined as above. 

If the f'unctions I), A(t,@,O), A(t,@,-r) of Definition 1.1 are 

uniformly continuous on closed bounded subsets of 51 and f ( t , @ )  is 

loca l ly  Lipschitzian in  4, then the mapping T(t,a): U(t,a) 4 

T(t,a)U(t,a) i s  a homecxnorphism. 

w- 

Proof: 

tension of Tlieorem 1.4 t o  the backwad continuation of functions 

by (1.1). 

This is a consequence of Theorem 3.1, Tlleorem 1.4 and the ex- - 
4 

For RFDE, it i s  generally impossible t o  find a solutiop 

through (a,@) defined t o  the lef t  of a. In  fact ,  i f  such a solu- 

t ion exis ts  on [u-r-cx,a], a > 0, then x must be continuously 

different iable  on 

8 E (-a,O) and 4 m a y  only be continuous. Wen if  @ is contin- 

uously differentiable,  there may not be a solution through 

the lef't o f  B for  8 RFDE. If the d i f f e ren t i a l  equation is 

(a-cx,~). , On the other hand, x(u+e) = @(e) fo r  

(a,@) to 

- -. 
; . f  

(3 .I) %(t) = f(t ,xt)  



% 

it is ccrtttinly neeessaxy for @(o) = f(a3@) if a solution of (3.1) 

exis t s  on [a-r-a,a], 01 > 0, through (a3@)'  

We prove 

n Theorem 3090 If !J i s  an open s e t  i n  R X C, f', D -+ R i s  atonlie 

a t  -r on h i  (a,@) e SZ and there is'.an a3 0 < a < r such t h a t  

; ( e )  is  continuous for  Q e [-aoO], i (0)  r: f ( u 9 @ ) ,  then there are an 
- a > 0 and a unique solution x of (3.1) on [u-r-E,a] t h r o u a  (a,4), 

Proof: A function x i s  a solution of (3.1) on [a-r-a,@) through 

(a,@) 

____p.l 

i f  and only if xQ = @, (t3xt) E 0, t E [u-a,a] and 

S ( t )  = @(-r), t e E-~-CI , -PJ .  men x i s  a solutiion of ( ~ ~ 2 )  

if armd only if x(cr+t) = $(t) i- z ( t )  and z satisfies 

If f ( t#@+q)  = f ( tp@)  + f;(t,@)$ + g(t#@,$), then the 

def ini t ion of the  derivative implies that  g(t,@,$) i s  continuous i n  

- -. 
: t  



where e( t ,@,p)  is continuous i n  (t,4,p) for  ( t , 4 )  E $2, 8 B 0, ' 

and e(t,@,O) = 0. If we make use of t h i s  i n  (3.3), then x is  a 

solution of (3,2) i f  and only if x(u+t) = @ ( t )  + z ( t )  and z ( t )  

s a t i s f i e s  

h 

. .  

(3.4) f;(cf+t,?t)zt = -f(a+t ' t  E ) - g(af.t,+t) + i(t), t E [ - a , O ] ,  

2 = 0. 
0 

If we l e t  A ( t , @ , - r )  dzf B(t,4) be t he  function defined i n  Definition 

1.1, then x(ui-t) = @(t) + z ( t )  is a solution of (3.2) i f  and only i f  

z ( t )  satisfies 

6 

z = 0. 
0 

*' i 

For any p > 0, l e t  B = ($ E C,' l$l S e ) .  For any v, 0 < v < 1/4, 

there are a > 0, f3 > 0, such that 
B 

(a+%,&$)- E €3, 
' > v  .* 

' i p  

I BoL(u+t, @+$) I e (u+t,@+$, 6) < v 



Choose a,f3 so t h a t  these relat ions are  sa t i s f ied ,  For 

any nonnegative real &@, let M(&,B) be the set defined by 

n 
= ( E  E C(E-r-6,0]3E ): 5 ,  = 0, E, E B,, t E [-&,O]). 

B . .  

E E J&’(63p)o Further r e s t r i c t  & so t h a t  

for t E [ - 6 p ~ .  

For any 5 E @’(6>B), define the  transformation T: &(g3P) -+ 

En) by the re la t ion  

By bypothes:i.s i ( 0 )  = f(o,@) and therefo:re the fixed points of T i n  
.) - .  

: a  c3p) coincide with the solutions x of (3.5) on [a-r-ii,o] with 
A 

x(0-1-t) = @(t) + z ( t )  where z E t E [-&JO]. t 
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We now show tha t  T i s  a contraction on It is 

clear  from (3.6) and the  above r e s t r i c t ion  on E,E that  

. . .  

for a l l  t E [-6,0], t, 5 E d(ti,j5). 
and T is  a contraction. Thus, there is a unique fixed point i n  

d ( Z , p )  

Therefore, T: ~ ( i i , b )  -+ .cjt(;E,B) 

and this proves the theorem. 

Theorem 3.3 i s  a generalization of a r e su l t  of Hastings [8]. 

n GqrollaJry 3.1. Suppose Sl i s  an open s e t  i n  R x C, f: D 3 E i s  

-r, and the solution x(u,@) .of (3.1) through 

anY (a,@) e Sl is unique. If T(t,a): C 3 C, t E u, is  defined by 

T(t,cr)@ = xt(a,@), then T(t,u) i s  one-to-one. 

&* 
’ * ’  Continuous, atomic a t  

Proof: If the assertion is  not true, then there  are $ # @ i n  C 

and a t1 > cr such t h a t  x (a,@) = (u,Jr), xt(u,@) # x,(a,$), 

0 I; t < tlo If x ( t )  = x(u,@)(t),y(t) = x(u,$)(t), then b(t) P 

f(t x ) f ( t )  = f ( t ,yt )  j t ,  
of x. Since f is assumed t o  be atomic a t  -r, Theorem 3.3 implies 

there are  an a = a ( t l )  > 0 

- 
tl xtl 

for a l l  t > 0 i n  the domain of def ini t ion 

mri a unique solution of (3.1) on 

[tl-r-a,tl-r] through ( t  x ) 8  (tl,yi $o Since (tl,xt ) = ( ~ 1 ~ ~ ~ ~ ~  
1 1 1’ tl 

by hypotheses, it follows tha t  (t,xt) = (t,y,) for  t - a S t S 
1 



2 3. 

This i s  a contradiction and proves the corollary. 

4, Ra.te of Approach t o  Zero of Solutions of Linear Equations, 

In  t h i s  section, we prove 

! .  
Theorem 4.1, Suppose SI = ( ~ , o o )  x C, ii(t3q)) f(t ,p) i n  (1.1) are  

l ineax i n  q j  there  is  a posit ive constant. k such that  lD(tjp)l 6 

kip( If(t ,ql  5 kllpl ( t , c p )  E: 52 and D i s  uniformly a t m t c  at 0 

and -r on SI, For any (u,cp) E a, there is a unique solution 

x(ojcp) of (1,l)  through (cr,cp) which exists on ( 7 % ~ )  and, i f  a 

solution x(%) approaches zero fas te r  than any exponential. as t -+ w3 
x ' <  

-"@. 
then x ( t )  E 0 f o r  a l l  t E ( ~ ~ o o ) .  

Proof: The existence and uniqueness of the  solution x(a,cp) on 

(7,801 Furthermore, 

following the same arguments as i n  Lemma I1,l i n  [5J, one can show 

PprP-IIQIs 

follows from the r e su l t s  i n  Sections 2 and 3e 

there are posi t ive constants a, b > 0 such that  for any u E: ( 7 , ~ ) ~  

Suppose there  is EL t e (T,=) such tha t  > 0, Since 

.(a) approaches zero fas te r  than any exponential. as u -+03 for any 

a > 0, there Its a constant K(a,t) 

[tBa), Therefore, for Q z t, 

such" that [.,I 5 K(a,t)e'-OW3 
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-bt - (acb)u 0 < IxtI S ae K(a,tt)e b 
, 

If a ,  is chosen such .that a > M then . for  u suf f ic ien t ly  lwge, th i s  

gives a contradiction and proves the theorem. 

The above theorem generalizes a resu l t  of Wright [g] for 
.. 

d i f f e r e n t i d d i f f e r e n c e  equations. 

For autonomous l inear  RFDE, one can prove tha t  no nonzero 

solution can approach zero faster than any exponential as t 4 0 0  

provided %hat f is atomic a t  -r, The basic idea of the proof pro- 

ceeds in  the same manner but requires an estimate of the solution a t  

t,+e t 

at  time u > to 

in terms of the soLution and the derivatives of the solution 
ui 

For t h i s  case, D. Henry [lo] using properties of 

en t i re  f'unctions has proved a much stronger resul t ;  namely, any solu- 

t ion approaching zero f a s t e r  than any exponential as t 4 0 0  must be 

ident ical ly  zero a f t e r  a fixed time (depending only on the equation and 

not the solution) even when f is  not atomic a t  -r. 

For nonautonomous l inear  per'iodic RFDE; les are known 

(see [ll]) f a r  which nonzero solutions can approach ZePo fas te r  than 

any exponential as t -+ 00, However, these examples have an f which 

i s  not atomic at -rb 
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